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Abstract Trait means of marker genotypes are often
inconsistent across experiments, thereby hindering the
use of regression techniques in marker-assisted selec-
tion. Best linear unbiased prediction based on trait and
marker data (TM-BLUP) does not require prior in-
formation on the mean effects associated with specific
marker genotypes and, consequently, may be useful in
applied breeding programs. The objective of this paper
is to present a flanking-marker, TM-BLUP model that
is applicable to interpopulation single crosses that
characterize maize (Zea mays L.) breeding programs.
The performance of a single cross is modeled as the sum
of testcross additive and dominance effects at unmar-
ked quantitative trait loci (QTL) and at marked QTL
(MQTL). The TM-BLUP model requires information
on the recombination frequencies between flanking
markers and the MQTL and on MQTL variances.
A tabular method is presented for calculating the con-
ditional probability that MQTL alleles in two inbreds
are identical by descent given the observed marker
genotypes (Gk

0"4
) at the kth MQTL. Information on

identity by descent of MQTL alleles can then be used
to calculate the conditional covariance of MQTL ef-
fects between single crosses given Gk

0"4
. The inverse of

the covariance matrix for dominance effects at unmar-
ked QTL and MQTL can be written directly from the
inverse of the covariance matrices of the corresponding
testcross additive effects. In practice, the computations
required in TM-BLUP may be prohibitive. The com-
putational requirements may be reduced with simpli-
fied TM-BLUP models wherein dominance effects at

MQTL are excluded, only the single crosses that have
been tested are included, or information is pooled
across several MQTL.
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Introduction

Molecular genetic markers enable the mapping of
genes controlling quantitative traits and subsequent
marker-assisted selection (Soller and Beckmann 1983;
Lande and Thompson 1990). If flanking marker loci
and a quantitative trait locus (QTL) are in linkage
disequilibrium, the recombination frequencies between
the flanking markers and the QTL as well as the mean
effects of QTL alleles can be estimated (Haley and
Knott 1992; Martinez and Curnow 1992; Zeng 1994).
In maize (Zea mays L.), many studies have been
conducted to map QTL for grain yield (Edwards et al.
1987; Stuber et al. 1992; Zehr et al. 1992; Beavis
et al. 1994; Veldboom and Lee 1994; Ajmone-Marsan
et al. 1995; Austin and Lee 1996; Eathington et al.
1997), disease resistance (Bubeck et al. 1993; Freymark
et al. 1993), insect tolerance (Lee 1993; Schön et al.
1993), kernel chemical composition (Goldman et al.
1993; Schön et al. 1994), and morphological traits
(Beavis et al. 1991; Koester et al. 1993; Schön et al.
1994; Veldboom et al. 1994).

Despite the detection of QTL for such traits, marker-
assisted selection based on regression of trait means on
marker genotypes has not been widely used in maize
breeding programs (Smith and Beavis 1996). Genotype x
environment interaction causes estimated QTL effects
to vary across environments (Beavis and Keim 1995).
The QTL allele linked to a given marker allele may
vary among maize inbreds, thereby limiting the



estimates of marker-associated effects to the mapping
population studied. The resulting inconsistency in
means of marker genotypes among mapping popula-
tions and environments (Dudley 1993) causes difficulty
in improving traits by selecting for desirable marker
alleles in any given breeding population.

Best linear unbiased prediction based on trait and
marker information (TM-BLUP) may be an alternative
procedure that would make marker-assisted selection
feasible in maize breeding programs. Neither linkage
disequilibrium between marker loci and QTL nor
information on the mean effect associated with a
particular marker allele is needed in TM-BLUP
(Wang et al. 1995). Rather, TM-BLUP requires
information on recombination frequencies and QTL
variances. Although estimates of marker-associated
effects may be specific to mapping populations and
target environments, the recombination frequencies be-
tween flanking markers and a QTL are assumed consis-
tent across populations and environments. These
recombination frequencies can be estimated from
a large mapping population evaluated in a large num-
ber of environments (Beavis 1994). The QTL variances,
as well as trait variances, can be estimated ad hoc
from data sets routinely generated in breeding
programs. The ability of TM-BLUP to accommodate
general and unbalanced data structures makes it a
potentially useful procedure in applied breeding
programs (Goddard 1992).

Intrapopulation TM-BLUP has been proposed for
single marker (Fernando and Grossman 1989), multiple
non-flanking marker (van Arendonk et al. 1994), and
multiple flanking marker (Goddard 1992) additive gen-
etic models. However, a multiple flanking-marker, in-
terpopulation TM-BLUP model that is applicable to
hybrid species such as maize has not been developed.
My objectives are to: (1) describe a method of calculat-
ing the covariance between single crosses for a QTL
flanked by markers; (2) propose an interpopulation
TM-BLUP model for markers that flank a QTL; (3)
present a simple method for calculating the inverse of
the dominance covariance matrices in TM-BLUP; and
(4) discuss the applicability of TM-BLUP in hybrid
breeding programs.

Theory

Single crosses are made between homozygous lines
from two unrelated heterotic groups. Assume i and j are
any two inbreds from Group I whereas i@ and j@ are any
two inbreds from Group II. Linkage equilibrium
among QTL is assumed in the Group I and Group II
base populations. The genetic model includes testcross
additive and dominance effects, but epistasis is assumed
absent.

Covariance between single crosses at an unmarked QTL

Schnell (1965) and Stuber and Cockerham (1966) derived the
covariance between single crosses at a single locus:
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where: f
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"coefficient of coancestry between i and j; f
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"coeffic-

ient of coancestry between i@ and j@; Vl
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"additive variance of
alleles from Group I inbreds, testcrossed to Group II inbreds, at the
lth unmarked QTL; Vl

A(2)
"additive variance of alleles from Group

II inbreds, testcrossed to Group I inbreds, at the lth unmarked QTL;
and Vl

D
"dominance variance of paired Group I and Group II

alleles at the lth unmarked QTL. The covariance between i]i@ and
j]j@ across all unmarked QTL is:
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Covariance between single crosses at a QTL flanked by markers

Assume that two marker loci (M
1

and M
2
) flank a QTL (Q):

The recombination frequencies (Haldane 1919) are r
1

be-
tween M

1
and Q and r

2
between Q and M

2
. The alleles that

are homozygous in a given inbred are denoted in superscript; i.e.,
i has the alleles M*

1
, Q*, and M*

2
.

The conditional covariance between single crosses at the kth
marked QTL (MQTL), given the observed marker genotypes flank-
ing the kth MQTL (Gk

0"4
), is:
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where: Pr(Q*,Q+DGk
0"4

)"conditional probability that Q* is
identical by descent (denoted by,) to Q+ given Gk

0"4
;

Pr(Q*{,Q+{DGk
0"4

)"conditional probability that Q*{,Q+{ given
Gk

0"4
; Vk

MA(1)
"testcross additive variance of alleles from Group I at

the kth MQTL; Vk
MA(2)

"testcross additive variance of alleles from
Group II at the kth MQTL; and Vk

MD
"dominance variance of

paired Group I and Group II alleles at the kth MQTL.
The Pr(Q*,Q+DGk

0"4
) and Pr(Q*{,Q+{DGk

0"4
) terms for MQTL

are analogous to the f
*+

and f
*{+{

quantities for unmarked QTL.
The calculation of Pr(Q*,Q+DGk

0"4
) and Pr(Q*{,Q+{DGk

0"4
) is out-

lined below.

Probability of descent of a QTL allele with flanking markers

Suppose a and b are the parental inbreds of i, and j is not a
direct descendant of i. The Pr(Q*,Q+DGk

0"4
) term can be expressed in

terms of the conditional probability that Q+,Q! and Q+,Q"

given Gk
0"4

:
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where = indicates that the Q* allele descended from Q! or Q".
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Table 1 Pedigrees and marker genotypes of hypothetical inbreds

Inbred Parent 1 Parent 2 p! M
1

locus M
2

locus

L1 ## !!

L2 !! ##

L3 L1 L2 0.50 ## !!

L4 L2 L3 0.50 ## ##

L5 L4 L2 0.75 ## ##

!Parental contribution of Parent 1 to the inbred. The p values ignore
any relationship between Parent 1 and Parent 2 and have expected
values of 0.50 for an F

2
-derived inbred, 0.75 for a BC

1
-derived

inbred and its recurrent parent, 0.25 for a BC
1
-derived inbred and its

donar parent, 0.875 for a BC
2
-derived inbred, etc

Table 2 Conditional probability, given observed marker genotypes,
of identity by descent of MQTL alleles among five hypothetical
inbreds

L1 L2 L3 L4 L5

L1 1 0 0.9817 0.3996 0.3349
L2 1 0.0183 0.6004 0.6651
L3 1 0.4179 0.3532
L4 1 0.9353
L5 1

There are four possible ways by which Q*=Q!:

M
1

M
2

Between M
1

Between Q
and Q and M

2

(1) M*
1
=M!

1
M*

2
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2
No No
recombination recombination

(2) M*
1
=M!

1
M*

2
=M"

2
No Recombination
recombination

(3) M*
1
=M"

1
M*

2
=M!

2
Recombination No

recombination
(4) M*

1
=M"

1
M*

2
=M"

2
Recombination Recombination

Assuming no interference, the frequency of non-recombinant
marker genotypes among recombinant inbred lines [i.e., (M*

1
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1
,
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2
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2
) and (M*

1
=M"

1
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2
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2
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#
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1
, the frequency of recombinants between

M
1

and Q among recombinant inbred lines, is equal to 2r
1
/(1#2r

1
)

(Haldane and Waddington 1931) and R
2

is equal to 2r
2
/(1#2r

2
).

The frequency of recombinant marker genotypes [i.e., (M*
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,
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2
), (M*
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2
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2
. The

conditional probability that Q*=Q!, given Gk
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, is:
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The values of Pr(M*
1
=M!

1
), Pr(M*

1
=M"

1
), Pr(M*

2
=M!

2
), and

Pr(M*
2
=M"

2
) can be easily determined from the marker genotypes,

and are equal to 1 or 0 if the marker is polymorphic between a and b.
Suppose a has the ## genotype, b has the !! genotype, and
i has the ## genotype at the M

1
locus. In this example,

Pr(M*
1
=M!

1
)"1 and Pr(M*

1
=M"

1
)"0. But if a, b, and i all have

the ## genotype, the values of Pr(M*
1
=M!

1
) and Pr(M*

1
=M"

1
)

need to be determined from the parental contributions to inbred
progeny; i.e., the proportion of the genome derived directly by an
inbred from each of its two parents (Bernardo et al. 1997). For
example, if i is a BC

1
-derived inbred, a is the recurrent parent

whereas b is the donor parent, and all three inbreds have the ##

genotype, then Pr(M*
1
=M!

1
)"0.75 and Pr(M*

1
=M"

1
)"0.25.

The Pr(Q*=Q"DGk
0"4

) term can be obtained in the same manner
as Pr(Q*=Q!DGk

0"4
), leading to a solution to Pr(Q*,Q+DGk

0"4
).

Or, because Q* must have descended from either Q!

or Q", Pr(Q*=Q"DGk
0"4

) can simply be calculated as
[1!Pr(Q*=Q!DGk

0"4
)]. The use of a tabular method for obtaining

Pr(Q*,Q+DGk
0"4

) is illustrated in the following numerical example.

Numerical example

Suppose the map distances are r
1
"9 centiMorgans (cM) between

M
1

and Q and r
2
"6 cM between Q and M

2
. These map distances

are equivalent to R
1
"0.141432 and R

2
"0.101592. The frequency

of recombinant marker genotypes among recombinant inbred lines
is R"(R

1
#R

2
!2R

1
R

2
)"0.214287. Consider five hypothetical

inbreds with different genotypes at M
1
and M

2
(Table 1). Inbreds L1

and L2 are progenitor inbreds that are unrelated to each other. L3
and L4 are F

2
-derived inbreds, whereas L5 is derived from the

[(L4]L2)]L4]BC
1

population.
Begin by sorting the inbreds so that each parent is listed before

any of its progeny. Hence, the inbreds can be arranged as (L1, L2,
L3, L4, L5) or (L2, L1, L3, L4, L5) but not in any other order. Set up
a table, with a row and a column for each inbred, of Pr(Q*,Q+DGk

0"4
)

values by entering 1 in the diagonal elements of this table, i.e., the
two alleles at the MQTL in a homozygous line are identical by

descent with each other. For the progenitor inbreds (L1 and L2) that
are unrelated with each other, enter a Pr(Q*,Q+DGk

0"4
) value of zero

in the corresponding off-diagonal element.
The Pr(Q*,Q+DGk

0"4
) value for the first non-zero off-diagonal

element in the first row (i.e., L1, L3) is calculated as (Eq. 1):

Pr(QL3,QL1DGk
0"4

)"Pr(QL3=QL1DGk
0"4

) Pr(QL1,QL1DGk
0"4

)

#Pr(QL3=QL2DGk
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Now,
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)
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1
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1
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#[Pr(ML3
1
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1

) R
1
Pr(ML3

2
=ML2

2
)R

2
]/(1!R)

"[(1) (0.858568) (1) (0.898408)]/0.785713

#[(1) (0.858568) (0) (0.101592)]/0.214287

#[(0) (0.141432) (1) (0.898408)]/0.214287

#[(0) (0.141432) (0) (0.101592)]/0.785713

"0.981713

Similarly, Pr(QL3=QL2DGk
0"4

)"0.018287. Substituting the
Pr(QL3=QL1DGk

0"4
) and Pr(QL3=QL2DGk

0"4
) values, which should

sum to 1, in Eq. 1:

Pr(QL3,QL1DGk
0"4

)"0.981713(1)#0.018287(0)"0.981713

The rest of the Pr(Q*,Q+DGk
0"4

values in the first row [(L1, L4),
(L1, L5)], followed by those in the second, third, fourth and fifth
rows, can be calculated with the same procedure (Table 2). Note
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that the parents of L5 are not polymorphic at M
2
, and

Pr(ML5
2

=ML4
2

)"0.75 and Pr(ML5
2
=ML2

2
)"0.25.

TM-BLUP for single crosses

Assume there are n
1

inbreds in Group I and n
2

inbreds in Group II.
The population comprises the n

1
n
2

possible crosses between
Group I and Group II inbreds. In practice, many of the n

1
n
2

potential single crosses may not have been evaluated in field
trials, but the performance of such untested single crosses may be
predicted from the performance of the tested single crosses
(Bernardo 1996). Suppose there are q MQTL for the trait of interest,
each MQTL being flanked by a pair of markers and each MQTL
being independent from each other. The mixed linear model in
TM-BLUP is:

y"Xb#Z
1
a
1
#Z

2
a
2
#Zd

# +
k/1,q

Wk
1
vk
1
# +

k/1,q

Wk
2
vk
2
# +

k/1,q

Wkdk
M
#e

where: y"vector of observed means of single crosses for a given
trait; b"vector of fixed effects; a

1
"n

1
]1 vector of testcross addi-

tive effects of Group I inbreds at unmarked QTL; a
2
"n

2
]1 vector

of testcross additive effects of Group II inbreds at unmarked QTL;
d"n

1
n
2
]1 vector of dominance effects of tested and untested

single crosses at unmarked QTL; vk
1
"n

1
]1 vector of testcross

additive effects of Group I inbreds at the kth MQTL; vk
2
"n

2
]1

vector of testcross additive effects of Group II inbreds at the kth
MQTL; dk

M
"n

1
n
2
]1 vector of dominance effects of tested

and untested single crosses at the kth MQTL; e"vector of
residual effects; and X, Z

1
, Z

2
, Z, Wk

1
, Wk

2
, and Wk are incidence

matrices of 1’s and 0’s relating y to the respective fixed or random
effects. The covariance matrix of random genetic effects with one
MQTL is:

Var

a
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a
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"

A
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2
V
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0 0 0 0 Mk
2
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M
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The above covariance matrix can be expanded to include more than
one MQTL. For the unmarked QTL, the elements of the genetic
relationship matrices are f

*+
in A

1
, f

*{+{
in A

2
, and f

*+
f
*{+{

in D. For the
kth MQTL, the elements of the conditional genetic relationship
matrices, given the observed marker genotypes, are Pr(Q*,Q+DGk

0"4
)

in Mk
1
, Pr(Q*{,Q+{DGk

0"4
) in Mk

2
, and Pr(Q*,Q+DGk

0"4
)

Pr(Q*{,Q+{DGk
0"4

) in Dk
M
. The Vk

MA(1)
, Vk

MA(2)
, and Vk

MD
MQTL vari-

ances can be estimated by restricted maximum likelihood proced-
ures outlined by Henderson (1985), i.e., in the same manner as the
trait variances at unmarked QTL [V

A(1)
, V

A(2)
, and V

D
] are esti-

mated. Non-normal distributions are expected for MQTL effects.
However, Goddard (1992) found that such departures from normal-
ity do not decrease the accuracy of BLUP.

Inverse of D and Dk
M

Maize breeders typically evaluate up to a few hundred experimental
inbreds in each heterotic group, but there are thousands of potential
interpopulation single crosses (Bernardo 1996). Whereas obtaining
the inverse of A

1
, A

2
, Mk

1
Mk

2
will not be difficult, obtaining the

inverse of D and Dk
M

may be prohibitive. For example, if n
1
"200

and n
2
"100, then the dimensions of the conditional genetic rela-

tionship matrices for the MQTL are 200]200 for Mk
1

100]100 for
Mk

2
, and 20, 000]20, 000 for Dk

M
. An efficient method to obtain the

inverses of D and Dk
M

would be useful.
For the sake of illustration, assume there are only three inbreds in

Group I and two inbreds in Group II, and the Group I ] Group II
crosses are sorted as follows: [1]1, 1]2, 2]1, 2]2, 3]1, 3]2].
Because inbreds in Group I are unrelated to inbreds in Group II,
Dk

M
is equal to the Kronecker product (denoted by ?, Searle 1966

p 215) of Mk
1

and Mk
2
:

Dk
M
"Mk

1
?Mk

2

"
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2
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mk(23)
1

Mk
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mk(31)
1

Mk
2
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1

Mk
2

mk(33)
1

Mk
2

Assume the elements of the inverse of Mk
1

are designated ck(**{)
1

. The
inverse of a Kronecker product is equal to the Kronecker product of
the inverses of the matrices. Therefore, the inverse Dk

M
is equal to the

Kronecker product of the inverses of Mk
1

and Mk
2
:

(Dk
M
)~1"(Mk

1
)~1?(Mk

2
)~1

"

ck(11)
1

(Mk
2
)~1 ck(12)

1
(Mk

2
)~1 ck(13)

1
(Mk

2
)~1

ck(21)
1

(Mk
2
)~1 ck(22)

1
(Mk

2
)~1 ck(23)

1
(Mk

2
)~1

ck(31)
1

(Mk
2
)~1 ck(32)

1
(Mk

2
)~1 ck(33)

1
(Mk

2
)~1

Likewise, for unmarked QTL, D"A
1
?A

2
and D~1"

(A
1
)~1?(A

2
)~1. Hence, if n

1
"200 and n

2
"100, the inverses of the

20, 000]20, 000 D and Dk
M

matrices can each be obtained directly
from the inverses of two much smaller (200]200 and 100]100
matrices.

Discussion

Recombination frequencies between flanking markers
and MQTL are the crucial information needed in TM-
BLUP. Despite the availability of molecular markers in
maize for more than a decade, no comprehensive pub-
licly available map of QTL is available for complex
traits such as grain yield. Different methods for map-
ping QTL are discussed by Doerge et al. (1994). Per-
haps a logical approach is to develop a single mapping
population from a biparental cross that represents
common heterotic groups, e.g., B73]Mo17 in maize.
Large numbers of progenies ('500) need to be evalu-
ated in a large number of environments to obtain
reliable estimates of the location of MQTL (Beavis
1994).

The TM-BLUP approach requires marker informa-
tion on inbreds and all their progenitors. This require-
ment should not be a limitation in current maize
breeding programs, wherein (1) marker genotypes of
elite inbreds are often, if not routinely, obtained for
varietal protection purposes (Smith and Beavis 1996),
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and (2) new inbreds are developed from crosses
between elite inbreds, i.e., second-cycle breeding.

The TM-BLUP model may pose computational dif-
ficulties (i.e., inverting large matrices) given the num-
bers of inbreds and tested and untested single crosses
available in maize breeding programs. The computa-
tional difficulties increase as the number of MQTL
increases. Several approaches may reduce the computa-
tional requirements in TM-BLUP. First, a simplified
model may be used wherein the dominance effects of
MQTL alleles (dk

M
) are excluded. Inclusion of dk

M
in

TM-BLUP greatly increases the number of equations
that need to be solved. If single crosses are made be-
tween n

1
inbreds in Group I and n

2
inbreds in Group 2,

the number of random genetic effects in TM-BLUP is
(1#q) (n

1
#n

2
#n

1
n
2
), where q is the number of

MQTL. Hence, if n
1
"n

2
"100 and 10 MQTL are

known, the size of the coefficient matrix for random
genetic effects in TM-BLUP is 112,200]112,200.
Bernardo (1996) found that, for data that did not
include markers, the average ratio of V

D
to

(V
A(I)

#V
A(II)

#V
D
) for grain yield was only 0.26. If

V
D

is low, then estimates of Vk
D

are also expected to be
low and perhaps dk

M
may be excluded in the model to

facilitate computation. In the preceding example, the
size of the coefficient matrix for random effects is re-
duced to 12,200]12,200 if dk

M
is excluded.

A second approach for reducing the size of the coef-
ficient matrix is to include only the tested single crosses
in the model. Bernardo (1996) indicated that only about
10% of the potential n

1
n
2

single crosses are actually
tested in field trials and have prior data available. If the
analysis is limited only to the tested single crosses, the
number of random genetic effects in TM-BLUP is
(1#q) (n

1
#n

2
#tn

1
n
2
), where t is the proportion of

potential single crosses that have been tested. If
n
1
"n

2
"100, q"10, and t"0.10, the size of the

coefficient matrix for random effects is reduced to
13,200]13,200. The performance of the untested single
crosses can subsequently be predicted from the perfor-
mance of the tested single crosses (Bernardo 1996). But
a disadvantage of limiting the TM-BLUP analysis to
a subset of all potential n

1
n
2

single crosses is that the
inverse of Dk

M
(or D) can no longer be obtained directly

as the Kronecker product of the inverses of Mk
1

and
Mk

2
(or A

1
and A

2
).

A third approach for reducing the size of the coeffic-
ient matrix is to pool information on conditional gen-
etic covariances across the MQTL loci, as proposed by
van Arendonk et al. (1994). If there are q independent
MQTL, this procedure requires q separate TM-BLUP
analyses, each involving one MQTL at a time. With
n
1
"n

2
"100 and q"10, each of the 10 TM-BLUP

analyses would involve 2(n
1
#n

2
#n

1
n
2
)"20,400

random effects. After Vk
MA(1)

, Vk
MA(2)

and Vk
MD

have
been estimated for each of the q MQTL, matrices of
conditional genetic covariances, pooled across the
q MQTL, may be obtained (see van Arendonk et al.

1994 for details). In the final TM-BLUP analysis, which
involves covariances at unmarked QTL and pooled
covariances of MQTL effects, the size of the coefficient
matrix for random effects is 20,400]20,400.

The three approaches for reducing the computa-
tional requirements in TM-BLUP may be used singly
or in combination with each other. In the preceding
example, the number of random effects is further re-
duced to [(1#q) (n

1
#n

2
)#tn

1
n
2
]"3200 if dk

M
is

excluded and the analysis is limited to the single crosses
that have been tested.

Bernardo (1996) found that best linear unbiased pre-
diction based on trait data alone (T-BLUP) can effec-
tively predict the performance of maize single crosses
prior to field testing. The usefulness of TM-BLUP
compared with T-BLUP needs to be studied. Com-
puter simulation research is needed to determine the
usefulness of TM-BLUP with varying trait heritability,
number of MQTL, and proportion of the genetic vari-
ance explained by MQTL. Finally, TM-BLUP and
T-BLUP need to be compared when applied to empiri-
cal data sets that are available to breeders.
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